你的位置:纳米防水网 > 防水技术 > 超疏水疏油 > 浏览文章

【论文推荐】超疏水表面水下减阻研究进展

2020年12月20日 点击:



作者单位:西北工业大学航海学院

作者简介:任刘珍,女,博士生,主要从事流动减阻与流动控制研究。

基金项目:国家自然科学基金项目(51679203);基础前沿项目(JCKY2018*****18);国防科技工业海洋防务技术创新中心创新基金资助。


摘 要  超疏水表面在水下可以束缚气膜层,把部分固液接触界面转变为气液接触界面,并在气液界面上产生速度滑移以减小流动阻力,是一种新型高效减阻方法。从超疏水表面润湿特性出发,重点总结了超疏水表面水下减阻研究现状,分析了超疏水表面气液界面稳定维持的主要技术途径。最后,给出了提升气液界面稳定性的潜在突破方法,可为超疏水表面水下减阻技术的发展提供借鉴。

关键词  超疏水表面;减阻;气膜层;润湿;气液界面


引 言

随着海洋开发和海防形势的变化,我国海洋利用区域不断向深海、远海延伸,突破远航程技术迫在眉睫[1-2]。减阻是实现船舶和航行器远航程的一条重要技术途径。根据理论推算,将航行体阻力减小10%,在能源和航速等条件不变的情况下,航程可增加11.1%[1]。已有水下减阻技术包括超空泡、沟槽表面、柔性壁面、超疏水表面、微气泡、高分子添加剂等[3-5]


超疏水表面减阻方法可采用表面修饰或喷涂技术,通过在船舶和航行器外表面形成具有特定疏水微结构层,来实现水下减阻,具有简便、经济及海洋防污功能的优点,在海洋工程等相关领域潜在应用广泛[4,6-7]。本文在介绍超疏水表面润湿特性的基础上,综述了超疏水表面水下减阻的研究现状,并总结出超疏水表面气液界面稳定维持的技术途径。最后,展望了超疏水表面水下减阻研究的重点方向。


1  超疏水表面润湿特性


1.png


2.png

图1  不同表面液滴接触形态


当液滴在倾斜表面静止时,液滴前端和尾端的接触角并不相等。逐渐增大壁面倾斜角使液滴处于临界滑动状态时,液滴前端的接触角称为前进角,液滴尾端的接触角称为后退角,二者之差称为接触角滞后。一般超疏水表面的接触角大于150°,接触角滞后小于5°。


实际固体表面往往具有一定的粗糙度,液滴在具有单级微结构粗糙表面上的润湿状态可分为2[6]1)微结构阻止水侵入其空隙中,从而在固液之间形成间断的气液界面,对应为Cassie状态,如图1c)所示;2)微结构顶部气液界面被破坏,水侵入微结构间的空隙中,对应为Wenzel状态,如图1d)。超疏水表面具有极低表面能和粗糙微结构2个特点,其制备主要通过2种途径:1)在具有较高表面能的粗糙表面上进行低表面能物质的修饰;2)在低表面能壁面上构建微观粗糙结构。目前,科研人员已发展出一系列制备方法,并将超疏水表面应用于水下减阻等研究领域[4,7]



2  超疏水表面水下减阻研究现状


2.1  国外研究现状

超疏水表面减阻研究可追溯至上世纪末。1999年,Watanabe等[12]通过测量内壁涂覆疏水性氟烷烃的圆管和方管内的速度剖面与压降,发现层流状态时可减阻14%。随后,Tretheway等[13]在超疏水微通道试验中发现,在有减阻的超疏水壁面上存在明显壁面滑移现象,滑移速度占主流速度10%,并认为壁面滑移是其减阻的主因。2004年,Min等[14]采用直接数值模拟方法(DNS),进一步研究了湍流条件下滑移对减阻的影响。结果发现,流向滑移会造成流场中涡量减小,阻力降低;但施加展向滑移时表现为增阻。可见,超疏水表面上产生的滑移效应是其减阻的主要成因。


在超疏水表面滑移流动机理研究方面,Rothstein[15]在提取气液界面轮廓基础上(如图2a)所示),于2005[16]采用micro-PIV技术,对Re<1 000时超疏水微通道内层流流动进行了细致测试。结果发现,超疏水表面存在的气液界面是产生滑移现象和减阻的主因;且在气液界面中心处滑移速度可达主流平均速度的60%,如图2b)所示。2009年,Rothstein[17]对湍流状态下超疏水表面的模拟指出,超疏水表面存在的气液界面能产生可观滑移速度,最高可达主流平均速度的75%,最大预期减阻量达40%2016年,Hokmabad[18]通过测试超疏水表面有无气膜时的流场特性,再次证实稳定的气液界面能产生壁面滑移现象。因此,保持稳定的气液界面是产生可观滑移的前提条件。

3.png

图2  超疏水表面气液界面轮廓及速度测试结果 [15-16]


受流速、水压等因素影响,超疏水表面的气液界面容易失稳、破坏。2006年,Truesdell等[19]测试了低雷诺数条件下(Re为1.5~75)超疏水矩形微槽型圆柱转子附近的流场,发现当表面张力不足以阻止液体润湿超疏水微槽时,气液界面(Cassie状态)会消失。2013年,Aljallis等[20]在超疏水平板拖曳水池试验中发现,过渡状态时(105<ReL<106),壁面上气膜层可以存留,减阻约30%;但湍流状态下(106<ReL<107),气膜消失,


阻力增大。Dilip等[21]在2015年测试了不同压强条件下超疏水表面气液界面的形态和管道的压降。结果显示,负压条件下,气液界面会从凹坑中生长并外凸至流动剪切破坏,压降先增加后趋于稳定,呈现增阻(图3(a));正压条件下,气液界面逐渐缩小,压降先降低后增加,呈现减阻(图3(b))。2017年,Hokmabad等[22]利用高分辨率PIV技术研究了不同状态下超疏水微结构表面气液界面的变化规律。测试发现,低雷诺数和过饱和状态水有利于延长超疏水表面气膜的寿命,而水中微粒的添加会降低其寿命,缩短幅度甚至高达50%。由此可见,疏水表面的气液界面受外界因素影响容易失稳破坏,致使超疏水表面减阻降低甚至失效。


4.png

图3  不同压力条件下气液界面形态及对应压降变化[21]


2.2  国内研究现状

1996年,田军等[23]在国内最早开展了低表面能涂层水洞减阻试验,并获得超过18%的减阻量。随后几年里,他们又报道过数轮低表面能涂层减阻、降噪试验。但该时期,鲜有其他学者的跟进研究报道。2006年,余永生等[24]通过层流状态下超疏水表面阻力和边界层测试发现,壁面存在气膜的超疏水表面能减阻,并存在明显滑移现象;而无气膜的表面没有减阻。这也说明超疏水表面的气膜层是产生滑移的原因。2010年,姚朝晖等[25]利用碳纳米管构建出具有微纳二级结构的独特超疏水表面,在长140  mm的矩形截面槽道试验中发现其层流减阻效果可达36.3%2013年,其进一步测试发现,该种超疏水表面的湍流减阻效果甚至优于层流效果,减阻率高达53.3%[26]。黄桥高等[27]基于水洞测试了涂覆疏水涂层航行器模型的阻力特性,最大获得超过20%的减阻率。2013年,宋保维等[28]在中船重工七〇二所完成的超疏水环带减阻试验突破了传统管道实验的尺度限制。结果同样发现,多数超疏水涂层在低雷诺数时(Ren<3.5×106)有减阻效果;而随雷诺数增大,减阻迅速减弱,甚至增阻。2014年,宋东和Rothstein[29]合作完成的超疏水微通道减阻试验则进一步表明,当微结构平均尺度低于61 µm时,内壁处于Cassie状态,减阻显著;但微结构尺寸增大后,气膜逐渐消失转变为Wenzel状态,减阻失效,再次证实微结构是影响气膜稳定性的重要因素。


在超疏水表面气膜/气液界面研究方面,解辉等[30]2009年通过对纳米通道内气泡运动的分子动力学模拟发现,亲水壁面上气泡位于通道中间,超疏水壁面时气泡则位于壁面附近。这从分子尺度证明,超疏水壁面有利于实现气相附着。随后卢思等[31]采用VOF方法,对通道内壁逸出气泡的形成、生长及脱离进行了模拟,从连续介质尺度上表明,超疏水性有利于气相在壁面上的铺展和驻留。2014年,任峰等[32]在模拟湍流状态下棋盘状超疏水微结构上的气体封存效果时发现,当Re < 15 000时气体封存良好,但Re ≥ 20 000后气液界面开始破坏,水流进入微结构。2015年,北京大学段慧玲等[33]采用共聚焦显微镜,研究了不同压力环境下静水中的超疏水规则微结构内气液界面的破坏模式,并提出抑制气液界面的非对称破坏能显著提高其稳定性,如图4所示。

图4  超疏水微结构内气液界面的对称(a-d)和
非对称(e-h)破坏形式[33]


同年,胡海豹等[34]在人工激发湍流状态下,通过观测超疏水表面气膜和流场发现,水速低于1 m/s时表面能稳定维持气膜,并减弱湍流猝发强度;且水速为0.4 m/s对应减阻最佳,此时滑移长度可达18.3 µm,减阻约14.2%


段慧玲团队在2016年进一步研究了超疏水表面气液界面不同浸润状态和影响因素,总结了气液界面的演化机制[35]


从上述报道来看,超疏水表面减阻有效性和气液界面上的滑移现象已得到充分证实。同时,较高水速、压强等条件下,气膜消失和减阻失效问题也开始受到一些学者关注。因此,超疏水表面气液界面稳定维持问题亟待探索。



3  超疏水表面气液界面稳定维持技术总结


3.1  超疏水表面气体补充技术

在超疏水表面气体补充途径方面,主要包括气体注入、原位产气、气体溶解度调节等。其中,气体注入是最为简单和有效的方法。早在2000年,Fukuda等[36]就将人工通气与超疏水表面结合,在模型船底部形成大面积气膜,结果获得超过40%的减阻效果。2017年,胡海豹等[37]基于人工通气的方法,实现了剪切流动下超疏水表面损失气体的动态补充,结果显示:当超疏水表面在水下恢复至Cassie状态时,壁面涡量及剪切率低,测试所得最大滑移长度为21.43 μm,对应最大减阻量约20%。


原位产气的思路较多。例如,Kim等[38]在2012年提出利用电解水的方法实现超疏水表面气膜恢复的思路,在超疏水表面实现逆向润湿并稳定维持了其减阻效果。2014年,朱晓谷等[39]也通过在超疏水表面的凹坑状微结构内放置微型电极,使得水在进入凹坑内发生电解并产生气体,实现气膜维持,如图5(a)所示。2016年,Saranadhi等[40]在泰勒-库埃特流动中的超疏水转子表面引入Leidenfrost效应以构筑气膜,当实验雷诺数处于26 100~52 000范围时,结果获得80%~90%的减阻率。Panchanathan等[41]在2018年提出利用过氧化氢催化分解产生的氧气补充超疏水表面损失的气体(如图5(b)所示),并在泰勒-库埃特流动中观测到超疏水表面气膜的恢复。


气体溶解度调节主要通过改变流场压强实现,压强降低使得气体溶解度下降,流场中溶解的气体得以析出。Verho[42]2012年通过调节局部压强实现了超疏水表面气膜的恢复。Huynh[43]研究了加减压条件下超疏水表面气膜的塌陷和生长过程。2017年,Ling[44]通过实验研究了压强与水流对超疏水表面气膜溶解的影响。实验表明,减压和通入气体饱和水均能使得超疏水微结构内的气体生长,且水流可提高气体传递速率。


图5  超疏水表面原位补气方法


3.2  超疏水表面微结构调控技术

研究发现,具有T形凹角微结构的跳虫表面具有很强的疏水性和一定的疏油性[45]。受此启发,Liu[46]在亲水平板表面加工出类似于跳虫表面的微结构,结果发现该微结构的凸台有利于气液界面钉扎在微结构顶端并维持气膜,实现Cassie状态。Taghvaei等[47]将跳虫表面微结构束缚思路进一步拓展,将材料微结构多极化,通过在微米结构内部构造纳米结构,形成复合微结构表面,实现了固液接触面积的降低和气液界面稳定性的提高。2014年,王宝等[48]也设计了具有特殊展向沟槽的超疏水表面,发现这种沟槽不仅可在剪切作用下最大限度地阻止气体流失,还能产生微空泡现象对超疏水表面气体进行补充,最终获得15%的速度滑移。


为了实现大尺度气膜的束缚,2016年,胡海豹等[49]通过构造亲疏水相间表面形成润湿阶跃,产生约束固--液三相接触线移动的束缚力,实现了毫米尺度气膜的封存。2017年,胡海豹等[50]在旋转圆柱表面上利用润湿阶跃效应封存了亚毫米厚度的连续气环层,在无外来气体持续补充的条件下,该方法获得最大77.2%的减阻效果,且减阻率基本不随测试雷诺数变化。如图6a)所示,蓝色灰色相间表面,蓝色表示亲水,灰色表示超疏水。胡海豹等[51]2018年通过分子动力学模拟方法进一步研究了润湿梯度和壁面微结构对气液界面润湿及滑移行为的影响规律,并分析了润湿阶跃束缚气膜的机理。


图6  新型减阻表面构筑


针对超疏水表面气体溶解的问题,2016年,Hemeda[52]提出了新的气液界面封存思路,如图6b)所示。他们通过在微结构上部封存1层油膜,降低微结构底部气体的溶解量,并形成气--水三相接触界面。理论分析表明,该种结构设置有利于气液界面的稳定维持,且三相复合界面的滑移长度随油粘度的增加而逐渐增加。



结束语

超疏水表面减阻技术是一种具有广阔应用前景的新型高效水下减阻方法。目前研究者已经得到了超疏水表面水下减阻规律,深入揭示了其内在减阻机理,但对超疏水表面存在的气液界面失稳破坏问题仍缺乏有效解决办法,特别是湍流或高剪切流作用状态下的气膜维持问题。因此,未来应该在建立超疏水表面气液界面稳定性准则的基础上,探索超疏水表面气液界面长时稳定维持途径。潜在的技术突破途径包括:1)气体动态补充方式,如利用人工通气、电解水、化学反应等补充气体;2)拓扑结构优化方式,如微观结构调控、宏观润湿阶跃构筑;3)更换稳定减阻介质方式,如将气体换为低粘液体以减少气体溶解和扩散;4)多减阻原理耦合方式,如超疏水与规则沟槽或添加剂等其他减阻方法耦合。


参考文献(略)


文章经 数字海洋与水下攻防 公众号授权发布.


原文刊登于《数字海洋与水下攻防》2020年第3期

转载请注明出自:
数字海洋与水下攻防公众号